Ellipsoids, Complete Integrability and Hyperbolic Geometry
نویسندگان
چکیده
منابع مشابه
Ellipsoids, Complete Integrability and Hyperbolic Geometry
We describe a new proof of the complete integrability of the two related dynamical systems: the billiard inside the ellipsoid and the geodesic flow on the ellipsoid (in Euclidean, spherical or hyperbolic space). The proof is based on the construction of a metric on the ellipsoid whose nonparameterized geodesics coincide with those of the standard metric. This new metric is induced by the hyperb...
متن کاملGeometry of Diffeomorphism Groups, Complete Integrability and Geometric Statistics
We study the geometry of the space of densities Dens(M), which is the quotient space Diff(M)/Diffμ(M) of the diffeomorphism group of a compact manifold M by the subgroup of volume-preserving diffeomorphisms, endowed with a right-invariant homogeneous Sobolev Ḣ-metric. We construct an explicit isometry from this space to (a subset of) an infinite-dimensional sphere and show that the associated E...
متن کاملGeometry of Diffeomorphism Groups, Complete Integrability and Optimal Transport
We study the geometry of the space of densities Dens(M), which is the quotient space Diff(M)/Diffμ(M) of the diffeomorphism group of a compact manifold M by the subgroup of volume-preserving diffemorphisms, endowed with a right-invariant homogeneous Sobolev Ḣ-metric. We construct an explicit isometry from this space to (a subset of) an infinite-dimensional sphere and show that the associated Eu...
متن کاملContact complete integrability
Complete integrability in a symplectic setting means the existence of a Lagrangian foliation leaf-wise preserved by the dynamics. In the paper we describe complete integrability in a contact set-up as a more subtle structure: a flag of two foliations, Legendrian and coLegendrian, and a holonomy-invariant transverse measure of the former in the latter. This turns out to be equivalent to the exis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Moscow Mathematical Journal
سال: 2002
ISSN: 1609-3321,1609-4514
DOI: 10.17323/1609-4514-2002-2-1-183-196